STREEM:AlGaN-Strain Engineering

                                        

分享

相关产品

 
 

用于 AlGaN 基结构应变工程的 STREEM 软件

STREEM AlGaN 是一款专用软件工具,用于在 Si 晶片、蓝宝石片、SiC 晶片、GaN 晶片和 AlN 晶片上以 MOCVD 方法生长和冷却 (0001) III 氮化物异质结构时,对外延应力、弓形和位错动力学的演变进行自洽建模。它包括对以下现象的模拟:

  • 异质结构在生长过程的加热、生长和冷却阶段的曲率变化;
  • 工艺参数对应力演变和位错动力学的影响;
  • 结构在生长和冷却过程中形成裂缝;
  • 配方对通孔晶片温降的影响及其对结构弯曲的影响;
  • 处理现场曲率数据,检索特定层的应力状态;

为了预测压缩应力 (Al)GaN 层的松弛,我们开发了一个模型,根据工艺条件和应力状态,将松弛归因于穿线位错的成核和倾斜。建模的结果是,用户可以分析外延堆栈中穿线位错的应力、曲率、弯曲度、有效晶格参数、密度和倾斜角。通过调整配方,包括温度、层厚度和成分、工艺特定阶段的顺序和持续时间,可以跟踪上述特性的相应变化,并建立配方与异质结构特性之间的相关性。

 

1:带有分级 AlGaN 缓冲器的结构 

本示例基于 B. Krishnan et al., Sensors and Materials 25 3 (2013) 205。我司在垂直高速旋转盘 MOCVD 系统中模拟了生长在 8 英寸Si 衬底上的分级 AlXGa1-xN 缓冲层外延结构的曲率演变,请参见右侧的示意图。结果表明,该软件能够合理地再现曲率演变过程,包括分级 AlGaN 缓冲层、厚 GaN 层和冷却阶段的生长过程(见下图)。生长过程从 AlN 成核层(NL)开始,其应力状态没有直接建模,但可以通过处理原位曲率数据找到相应的错配松弛度。在这种情况下,第一个 AlGaN/AlN 界面的穿线位错密度仍然是用户需要拟合的唯一参数。与 NL 中的错配松弛度相结合,它可以作为基于成核层相同生长配方的所有后续预测应变工程的基础。

Schematic view of the stack, B. Krishnan et al., Sensors and Materials 25 3 (2013) 205

 

Comparison of calculated and experimental curvature evolution: (1): AlN nucleation layer;

(2): AlGaN graded buffer; (3): thick GaN layer; (4): AlN interlayers; (5): cooling

 

Detailed view of stress and threading dislocation density evolution during growth of the graded AlGaN buffer

 

GaN/AlN 超晶格缓冲结构建模

实验:E. Feltin et al., Appl. Phys. Lett. 79 (2001) 3230

这个案例是在 GaN-on-Si 缓冲结构中成功应用超晶格作为位错过滤器的首批实例之一。

应用 AlN/GaN 超晶格(SL)是有效降低穿线位错密度和抵消通常在硅基氮化镓晶片上生长过程中观察到的拉伸应力的另一种可行方法。在 SL 的后续 GaN 层中,AlN 层引起的压应力会导致现有位错的显著倾斜和湮灭,而 GaN 层不会超过新位错成核所需的临界厚度。这些效应结合在一起,导致位错密度大大降低。在这个例子中,我们说明了 STREEM AlGaN 可以成功地用于模拟这种具有不同数量的 AlN/GaN SL 和顶部 GaN 层厚度的硅基氮化镓结构在生长和冷却过程中的 TDD 和应力演变。

Reduction of TDD in the heterostructure with four GaN/AlN SLs separated by 200 nm GaN

 

 

Dependence of TDD on the number of superlattices: comparison with experimental data

 

Experimental and calculated in-plane strain of the top GaN layer in dependence on the number of AlN/GaN SLs

Publications

“Analysis of strain and dislocation evolution during MOCVD growth of an AlGaN/GaN power high-electron-mobility transistor structure” by Mikhail Rudinsky, Eugene Yakovlev, Roman Talalaev, Tomas Novak, Petr Kostelnik, and Jan Sik, joint work with ON Semi, Japanese Journal of Applied Physics 58, SCCD26 (2019)

“Analysis of strain and dislocation evolution during MOCV Dgrowth of AlGaN/GaN power HEMT structure” by Roman Talalaev, Mikhail Rudinsky, Eugene Yakovlev, Tomas Novak, Petr Kostelnik and Jan Sik, IWN 2018 (2018)

“Modeling of bowing, stress and threading dislocation density evolution in III-nitride heterostructures grown on Si substrate” by Yuji Mukaiyama, Mikhail Rudinsky, Roman Talalaev, Momoko Deura, Takuya Nakahara, Takeshi Momose, Yoshiaki Nakano, Masakazu Sugiyama and Yukihiro Shimogaki, IWMCG-9 (2018)

“Stress‐dislocation management in MOVPE of GaN on SiC wafers” by M. E. Rudinsky, E. V. Yakovlev, W. V. Lundin, A. V. Sakharov, E. E. Zavarin, A. F. Tsatsulnikov, L. E. Velikovskiy, PSS (A) Applications and Materials 213(10), DOI: 10.1002/pssa.201600210 (2016)

“Strain engineering for electronic devices: modeling capabilities” by S.Yu. Karpov, M.E. Rudinsky, A.V. Lobanova, E.V. Yakovlev, and R.A. Talalaev, ICCGE-18 (2016)

“Control of Stress, Bow, and Dislocation Density in (0001) AlN/GaN Superlattices Grown on Silicon” by M.E. Rudinsky, A.V. Lobanova, E.V. Yakovlev, and R.A. Talalaev, IWN 2016 (2016)

“Stress-dislocation management in MOCVD of GaN on SiC wafers” by W.V. Lundin, A.V. Sakharov, E.E. Zavarin, A.F. Tsatsulnikov, M.E. Rudinsky and E.V. Yakovlev, ISGN-6 (2015)

“Контроль напряжений и плотности дислокаций в технологии GaN-on-Si”, М.Э. Рудинский, А.В. Лобанова, Е.В. Яковлев, М.С. Рамм, Р.А. Талалаев, 10-я Всероссийская конференция НИТРИДЫ ГАЛЛИЯ, ИНДИЯ И АЛЮМИНИЯ – СТРУКТУРЫ И ПРИБОРЫ (2015)

 

More on Model Development

“Model of tensile stress relaxation in thin (0001) Al(Ga)N layers” by Mikhail Rudinsky, Sergey Karpov, Roman Talalaev, Wsevolod Lundin, DRIPXVIII (2019)

“Impact of metalorganic vapor phase epitaxy growth conditions on compressive strain relaxation in polar III-nitride heterostructures” by Mikhail E. RudinskyAnna V. LobanovaSergey Yu. Karpov and Roman A. Talalaev, JJAP 58(SC):SC1017  (2019), DOI: 10.7567/1347-4065/ab06b7

  • 返回顶部