Ky Sapphire

用 Kyropoulos 方法模拟蓝宝石晶体生长

分享

相关产品

 
 

利用 Kyropoulos 技术建立蓝宝石晶体生长模型

下面我们将展示利用 CGSim 软件通过 Kyropoulos 方法对蓝宝石单晶生长进行数值模拟的结果。结晶区的计算包括蓝宝石熔体的湍流、层流气体流、半透明晶体中的辐射热交换(包括边界的镜面反射、内部吸收和散射)。此外,如果试图采用简化模型,忽略晶体和熔体的半透明性,那么结晶前沿的几何形状和金属-晶体界面的温度梯度都会得出不切实际的结果。

数值模拟对生长系统的分析和优化非常有帮助,因为它能让我们深入了解那些极难观察或测量的过程。例如,熔体内部的温度分布和流动结构实际上是无法直接测量的。

                       Global heat transfer in the Ky crystal growth furnace with molybdenum heat shields

炉内的热交换

钼隔热箱的特定数量和几何参数对 Ky 炉的整体传热影响很大。一组隔热箱和其他隔热块分别位于炉子的侧面、顶部和底部(右图)。它们有助于保持坩埚和生长晶体周围的最佳温度分布,进而影响熔体流动结构和结晶前沿的几何形状。晶体周围元素的温度也会影响晶体中的热应力。

 

模型验证

使用实验数据验证了 CGSim 中的数值模型,并推荐用于建立 Ky 蓝宝石生长模型。可以看到(右图),模拟成功地再现了实验中观察到的辐条模式。通过计算预测的结晶形状与实验观察到的结晶形状之间的良好一致性表明,该模型能够充分预测晶体和熔体中的温度和热通量。反过来,这也表明我们可以对晶体中产生位错的热应力进行精确的数值预测。

Above: Temperature distribution over the melt free surface predicted in 3D unsteady modeling and a photograph of the melt surface

(courtesy of Crystal Development company, Moscow).

Right: Computed and observed crystal shapes

工业应用:配方优化

改进 Kyropoulos 炉的热区以减少结晶前沿的热梯度,可提高产出率和晶体质量。利用 CGSim 软件包,我们考虑了工业炉的几种配置(*)。在初始配置(修改 1)中,熔体流具有双涡结构,在晶体横向生长期间,一个较大的涡占据熔体核心,一个强度较低的涡位于熔体自由表面附近,并在圆柱生长阶段消失。这种流动模式将热熔体直接输送到结晶前沿,从而导致沿熔体/晶体界面的高温梯度。

Right: Distributions of the temperature gradient in the crystal, the temperature in the melt and the crucible,

and the flow pattern in the melt for Modification 1 (a) and Modification 2 (b)

 

在考虑了几种热区改造方案后,我们找到了一种在熔体中提供单涡流流动结构的熔炉配置(改造方案 2)。这种流动模式可使熔体在接近生长中的晶体时逐渐冷却,从而将晶体中的温度梯度降低30%。最初,在晶体的顶部,有明显的晶体直径减小区域,这可能是由于重熔或缓慢结晶造成的。经过生长技术改造后,重熔区域主要消失了(下图),详情请参见文献[3]。

Crystal shape before and after recipe optimization. Experiment by Monocrystal company, Stavropol’.

 

晶体内部的温度梯度和热应力值也因建议的修改而降低。技术优化前后的 von Mises 应力标准分布对比如下。

The von Mises norm stress distributions in the Standard and Modified Cases

 

实验证实了晶体质量的提高。例如,对靠近重熔区域的晶片样品进行的形态和光学调查显示,修改后形态 R 平面的位错密度从 103 厘米-2 降至 102 厘米-2(下图),详见 [3]。

  

The dislocation density in morphological R-plane before and after modifications

The optical nonuniformity in the polarized light, the plane (0001)

实例: 直径为 250 毫米的坩埚中 Ky 蓝宝石生长的三维建模

晶体播种只有在无熔体表面的播种点普遍存在向下的熔体流动时才能成功。在播种点向上的熔体流动可能会导致种子熔化。熔体对流和结晶的三维非稳态建模有助于找到最佳的加热条件,以实现平滑稳定的播种和平肩阶段。下面的动画图片显示了播种开始后和抬起阶段熔体流动的快速变化。

3D unsteady modeling of heat transfer, melt flow, and crystallization before seeding, at seeding stage, and at shouldering stage

          Temperature distribution over the melt free surface  before seeding 

Temperature distribution over the melt free surfaceat the seeding stage

   

Temperature distribution over the melt free surface  at the shouldering stage  

Publications

“Effect of heating conditions  on flow patterns during the seeding stage of Kyropoulos sapphire crystal growth”, Vladimir V.Timofeev, Vladimir V.Kalaev, Vadim G.Ivanov, J. of Crystal Growth 445 (2016) 47-52, https://doi.org/10.1016/j.jcrysgro.2016.04.016

“Study on crystal-melt interface shape of sapphire crystal growth by the KY method”, Weina Liu, Jijun Lu, Hongjian Chen, Wenbo Yan, Chunhua Min, Qingqing Lian, Yunman Wang, Peng Cheng, Caichi Liu, Yongliang Xu, J. of  Crystal Growth 431 (2015) 15-23, http://dx.doi.org/10.1016/j.jcrysgro.2015.08.018

“3D melt convection in sapphire crystal growth: Evaluation of physical properties”, Vladimir V. Timofeev, Vladimir V. Kalaev, Vadim G. Ivanov, International Journal of Heat and Mass Transfer 87 (2015) 42–48, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.03.058

“Effect of crucible shape on heat transport and melt–crystal interface during the Kyropoulos sapphire crystal growth”, C. Chen, H. J. Chen, W. B. Yan, C. H. Min, H. Q. Yu, Y. M. Wang, P. Cheng, C. C. Liu, J. of Crystal Growth 388 (2014), 29-34, https://doi.org/10.1016/j.jcrysgro.2013.11.002

“3D unsteady computer modeling of industrial scale Ky and Cz sapphire crystal growth”, S.E. Demina, V.V. Kalaev, J. of Crystal Growth 320 (2011) 23-27, https://doi.org/10.1016/j.jcrysgro.2011.01.101

(*) “Analysis of melt flow and crystallization during large-scale Kyropoulos sapphire growth”, Svetlana Demina, Vladimir Kalaev, Presentation during ACCGE-17, August 9 – 14, 2009, Grand Geneva Resort, Lake Geneva, Wisconsin USA

“Use of Numerical Simulation for Growing High Quality Sapphire Crystals by the Kyropoulos method”, S.E. Demina, E.N. Bystrova, V.S. Postolov, E.V. Eskov, M.V. Nikolenko, D.A. Marshanin, V.S. Yuferev, V.V. Kalaev Journal of Crystal Growth 310 (2008) 1443–1447 (20)

[3] “Numerical analysis of sapphire crystal growth by the Kyropoulos technique”, S.E. Demina, E.N. Bystrova, M.A. Lukanina, V.M.Mamedov, V.S. Yuferev, E.V. Eskov, M.V. Nikolenko, V.S. Postolov, V.V. Kalaev Optical Materials 30 (2007) 62–65 (20)

“Numerical analysis of sapphire crystal growth by the Kyropoulos technique”, S.E. Demina, E.N. Bystrova, M.A. Lukanina, V.V. Kalaev, V.M. Mamedov, V.S. Yuferev, E.V. Eskov, M.V. Nikolenko, V.S. Postolov, Presentation, ICCG15, Salt-Lake City, August 12–17, 2007

“Numerical analysis of sapphire crystal growth by the Kyropoulos technique”, S.E. Demina, E.N. Bystrova, M.A. Lukanina, V.V. Kalaev, V.M. Mamedov, V.S. Yuferev, E.V. Eskov, M.V. Nikolenko, V.S. Postolov, to be published in Journal of Optical Materials in 2006.

“Numerical solution of problems with radiation transfer in axisymmetric areas of a complex shape with specular Fresnel’s”, V.M.Mamedov, S.А. Rukolaine, Math. Modeling, vol. 16, 10 (2004) pp.15-28

  • 返回顶部